

 Navigation

 	
 index

 	Particle Firmware develop documentation

Welcome to Read the Docs

This is an autogenerated index file.

Please create a /home/docs/checkouts/readthedocs.org/user_builds/particle-firmware/checkouts/develop/docs/index.rst or /home/docs/checkouts/readthedocs.org/user_builds/particle-firmware/checkouts/develop/docs/README.rst file with your own content.

If you want to use another markup, choose a different builder in your settings.

 Copyright .
 Created using Sphinx 1.3.1.

 Navigation

 	
 index

 	Particle Firmware develop documentation

Index

 Copyright .
 Created using Sphinx 1.3.1.

 _static/file.png

_static/up.png

search.html

 Navigation

 		
 index

 		Particle Firmware develop documentation »

 Search

 Please activate JavaScript to enable the search
 functionality.

 From here you can search these documents. Enter your search
 words into the box below and click "search". Note that the search
 function will automatically search for all of the words. Pages
 containing fewer words won't appear in the result list.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/comment-bright.png

gettingstarted.html

 Navigation

 		
 index

 		Particle Firmware develop documentation »

Getting Started

		Download and Install Dependencies

		Download and Build Repositories

		Edit and Rebuild

		Flash It!

2. Download and Build Repositories

The entire Particle firmware is contained in this repository.

There are two ways to download

		through the git command line interface

		download the zipped file from the github website

We recommend the first approach, since it makes keeping up to date with new releases
much simpler.

Method 1: Through the git command line interface.

Open up a terminal window, navigate to your destination directory and type the following commands:

(Make sure you have git installed on your machine!)

		git clone https://github.com/spark/firmware.git

Method 2: Download the zipped files directly from the GitHub website

		develop branch firmware [https://github.com/spark/firmware/archive/develop.zip]

How do we build these repositories?

Make sure you have downloaded and installed all the required dependencies as mentioned previously.
Note, if you’ve downloaded or cloned these previously, you’ll want to git pull or redownload all of them before proceeding.

Open up a terminal window, and switch branch to ‘latest’

git checkout latest

Navigate to the modules folder under firmware
(i.e. cd firmware/modules) and type:

make clean all PLATFORM=photon -s program-dfu

This will clean build the system firmware and the default main application (firmware/user/src/application.cpp) which contains Tinker, but you may overwrite this with your own application and add any required dependencies. The -s makes silences the verbose output, so be patient while it builds. If your device is in DFU mode, it will then download the 3 binaries one at a time. For more custom application location solutions, see the makefile documentation and learn how to use the APP=myapp option.

The makefile documentation describes the build options supported and how to target platforms other than the Core (i.e., Photon, P1, Electron, etc..)

Common Errors

		arm-none-eabi-gcc and other required gcc/arm binaries not in the PATH.
Solution: Add the /bin folder to your $PATH (i.e. export PATH="$PATH:<SOME_GCC_ARM_DIR>/bin).
Google “Add binary to PATH” for more details.

		You get make: *** No targets specified and no makefile found. Stop.
Solution: cd firmware/main

Please issue a pull request if you come across similar issues/fixes that trip you up.

Navigating the code base

All of the top-level directories are sub divided into functional folders that are
the various libraries that make up the firmware.

library	description
—:	:—
platform	bare-metal services, the lowest layer in the system
bootloader	the bootloader, with sources for each platform
hal	the Hardware Abstraction Layer interface and an implementation for each supported platform
services	platform neutral services and macros (LED control, debug macros, static assertions)
communication	implements the protocol between the device and the cloud
dynalib	framework for producing dynamically linked libraries
system	the system firmware (Networking, firmware updates.)
wiring	the Wiring API
user	contains the default application code (Tinker) and your own applications
main	top-level project to build the firmware for a device
modules	dynamically linked modules for the Photon/PØ/P1

Within each library, the structure is

		/src holds all the source code files

		/inc holds all the header files

The compiled .bin and .hex files are output to a subdirectory of build/target/.
The exact location is given in the final compiler output. (It depends upon the platform and on what is being built.)

3. Edit and Rebuild

Now that you have your hands on the firmware, its time to start hacking!

What to edit and what not to edit?

The main user code sits in the application.cpp file under firmware/user/src/ folder. Unless you know what you are doing, refrain yourself from making changes to any other files.

After you are done editing the files, you can rebuild the repository by running the make command in the firmware/main/ directory.
If you have made changes to any of the other directories, make automatically determines which files need to be rebuilt and builds them for you.

4. Flash It!

Its now time to transfer your code to your Particle device! You can always do this using the Over the Air update feature or, if you like wires, do it over the USB.

Make sure you have the dfu-util command installed and available through the command line

Steps:

		Put your device into the DFU mode by holding down the mode/setup button on the device and then tapping on the RESET button once. Release the MODE/setup button after you start to see the RGB LED flashing in yellow.
It’s easy to get this one wrong: Make sure you don’t let go of the MODE/SETUP button until you see flashing yellow, about 3 seconds after you release the RESET button.
A flash of white then flashing green can happen when you get this wrong. You want flashing yellow.

		Open up a terminal window on your computer and type this command to find out if the device indeed being detected correctly.

dfu-util -l
you should get something similar to this in return:

Found DFU: [1d50:607f] devnum=0, cfg=1, intf=0, alt=0, name="@Internal Flash /0x08000000/20*001Ka,108*001Kg"
Found DFU: [1d50:607f] devnum=0, cfg=1, intf=0, alt=1, name="@SPI Flash : SST25x/0x00000000/512*04Kg"

(Windows users will need to use the Zatig utility to replace the USB driver as described earlier)

		Now, from the main/ folder in your firmware repository and use the following command to transfer the .bin file into the device.

make program-dfu

Upon successful transfer, the device will automatically reset and start the running the program.

Common Errors

		As of 12/4/13, you will likely see Error during download get_status as the last line from
the dfu-util command. You can ignore this message for now. We’re not sure what this error is all about.

		If you are having trouble with dfu-util, (like invalid dfuse address), try a newer version of dfu-util. v0.7 works well.

Still having troubles? Checkout our resources page [https://www.particle.io/resources], hit us up on IRC, etc.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/down-pressed.png

build.html

 Navigation

 		
 index

 		Particle Firmware develop documentation »

The Build System

Quick Start

Running

make

For the core, or

make PLATFORM=photon

for the Photon, in the top-level directory creates the bootloader and firmware binaries for your device, which are output to subdirectories of the build/target/ directory.

The top-level make is mainly a convenience to build bootloader and main projects. It
supports these targets:

		clean - force the next build to be a full rebuild, and

		all (default), build the artefact.

The Recipes and Tips section describes the most frequently used commands. The remaining sections describe the build system in detail.

Build Components

The build system is organized as a number of build components. Each build component
exists in it’s own directory, with it’s own makefiles and is responsible for
build the artifacts that make up that component.

These are the primary components that produce executable code for a device:

		bootloader

		main (builds application firmware)

		modules (builds system+application firmware)

The other projects are libraries used by these primary projects.

When building firmware, it’s a good idea to build from main, since this offers
additional features compared to building in the root directory, such as program-dfu to flash
the produced firmware to the device.

Updating System Firmware (Photon)

When building locally on the photon from the develop branch, it is necessary
to update the system firmware to the latest version:

		put the Photon in DFU mode

		cd modules

		make PLATFORM=photon clean all program-dfu

		You can optionally add APP/APPDIR/TEST values to the command above to build a specific application as you would when building main.

This will flash the latest system modules and the application to your device.

A key indicator that this is necessary is that the Photon doesn’t run your application
after flashing, due to a version mismatch. The onboard LED will breathe magenta
to indicate Safe Mode when the application firmware isn’t run.

Overview

Targets

		all: the default target - builds the artefact for the project

		clean: deletes all artefacts so the next build runs from a clean state

		all program-dfu: (not bootloader) - builds and flashes the executable to a device via dfu

		all st-flash: flashes the executable to a device via the st-link st-flash utility

Variables

make accepts variable definitions as part of the command invocation

		v - verbose - set to 1 to trigger verbose output

		PLATFORM/PLATFORM_ID: specifies the target platform, either as a name or as an ID.

		PRODUCT_ID: specifies the target product ID.

		PRODUCT_FIRMWARE_VERSION: specifies the firmware version that is sent to the cloud.
Value from 0 to 65535.

		GCC_PREFIX: a prefix added to the ARM toolchain. Allows custom locations to be specified if
the ARM tools are not in the path.

When building main or modules:

		APP: builds the application stored in user/applications/$(APP). (The default is to build
the application code in user/src

		APPDIR: builds the application located in $(APPDIR). The directory specified
should be outside of the firmware repo working directory, allowing 3rd party applications to be built.
See USER_MAKEFILE.

		TEST builds the test application stored in user/tests/$(TEST).

		USER_MAKEFILE: when APPDIR is used this specifies the location of the makefile
to include, relative to APPDIR. The default is build.mk.

		DEBUG_BUILD described in debugging

When building main:

		TARGET_NAME: sets the base name of the artefact file produced. E.g. setting
TARGET_NAME=whereyou would produce the target named whereyou.bin The default
is the value of APP.

		TARGET_DIR: sets the directory where the target files are placed relative to
the current directory.

Platform name/IDs

The Platform ID describes the target platform.
If you are targeting the Spark Core, you can skip this section. A list of supported
platform IDs are listed in [platform-id.mk]((../build/platform-id.mk). The most
common are listed here:

Name	PLATFORM_ID
———-	:———–:
core	0
photon	6
P1	8

The platform is specified on the command line as

PLATFORM_ID=<id>

or as

PLATFORM=name

For example

make PLATFORM=photon

Would build the firmware for the Photon / P0.

To avoid repeatedly specifying the platform on the command line, it can be set
as an environment variable.

Linux/OS X:

export PLATFORM=photon

Windows

set PLATFORM=photon

In the commands that follow, we avoid listing the PLATFORM explicitly to keep
the examples concise.

Clean Build

make clean

This clears all output files from the build so that all sources are recompiled.

Specifying custom toolchain location

Custom compiler prefix can be used via an environment variable GCC_PREFIX.

For example when you have installed a custom toolchain under
/opt/gcc-arm-embedded-bin you can use invoke make using that toolchain
like this:

GCC_PREFIX="/opt/gcc-arm-embedded-bin/bin/arm-none-eabi-" make

The default value of GCC_PREFIX is arm-none-eabi, which uses the ARM
version of the GCC toolchain, assumed to be in the path.

Alternatively, a path for the tools can be specified separately as GCC_ARM_PATH,
which, if specified should end with a directory separator, e.g.

GCC_ARM_PATH="/opt/gcc-arm-embedded-bin/bin/" make

Controlling Verbosity

By default the makefile is quiet - the only output is when an .elf file is produced to
show the size of the flash and RAM memory regions. To produce more verbose output, define
the v (verbose) variable, like this:

make v=1

Building individual modules

The top-level makefile builds all modules. Each module can be built on its own
by executing the makefile in the module’s directory. The make also builds any dependencies.

For example, executing

cd main
make

Will build the main firmware, and all the modules the main firmware depends on.

Product ID

By default, the build system targets the Spark Core (Product ID 0). If
your product has been assigned product ID, you should pass this on the
command line to specifically target your product. For example:

make PRODUCT_ID=2

Builds the firmware for product ID 2.

Note that this method works only for the Core. On later platforms, the PRODUCT ID and version
is specified in your application code via the macros:

PRODUCT_ID(id);

and

PRODUCT_VERSION(version)

Building an Application

To build a new application, first create a subdirectory under user/applications/.
You’ll find the Tinker app is already there. Let’s say we want to create a new
app, which we’ll call myapp/

mkdir user/applications/myapp

Then add the files needed for your application to that directory. These can be named freely,
but should end with .cpp. For example, you might create these files:

myapplication.cpp
mylibrary.cpp
mylibrary.h

You can also add header files - your application subdirectory is on the include path.

To build this application, change directory to main directory and run

make APP=myapp

This will build your application with the resulting .bin file available in
build/target/main/platform-0/applications/myapp/myapp.bin.

Including Libraries in your Application

To include libraries in your application, copy or symblink the library sources
into your application folder.

To importing libraries from the WebIDE:

		rename the firmware folder to the same name as the library

		remove the examples folder

The library should then compile successfully

Changing the Target Directory

If you prefer the output to appear somewhere else than in the build/ directory
you can define the TARGET_DIR variable:

make APP=myapp TARGET_DIR=my/custom/output

This will place main.bin (and the other output files) in my/custom/output relative to the current directory.
The directory is created if it doesn’t exist.

Changing the Target File name

It’s also possible to specify the name of the output file, e.g. to revert to the
old naming convention of core-firmware.bin, set TARGET_FILE
like this:

make APP=myapp TARGET_FILE=core-firmware

This will build the firmware with output as core-firmware.bin in build/target/main/platform-0/applications/myapp.

These can of course also be combined like so:

make APP=myapp TARGET_DIR=myfolder TARGET_FILE=core-firmware

Which will produce myfolder/core-firmware.elf

Compiling an application outside the firmware source

If you prefer to separate your application code from the firmware code,
the build system supports this, via the APPDIR parameter.

make APPDIR=/path/to/application/source [TARGET_DIR=/path/to/applications/output] [TARGET_FILE=basename]

Parameters:

		APPDIR: The relative or full path to the directory containing the user application

		TARGET_DIR: the directory where the build output should go. If not defined,
output files willb e placed under a target directory of the application sources.

		TARGET_FILE: the basename of the files created. If not defined,
defaults to the name of the application sources directory.

Custom makefile

When using APP or APPDIR to build custom application sources, the build system
by default will build any .c and .cpp files found in the given directory
and it’s subdirectories. You can override this and customize the build process by adding the file
a makefile to the root of the application sources.

The makefile should be placed in the root of the application folder. The default name for the file is:

		when building with APP=myapp the default name is myapp.mk

		when building with APPDIR= the default name is build.mk

The file should be a valid gnu make file.

To customize the build, append values to these variables:

		CSRC, CPPSRC: the c and cpp files in the build which are compiled and linked, e.g.

SRC += $(call target_files,,*.c)
CPPSRC += $(call target_files,,*.cpp)

To add all files in the application directory and subdirectories.

		INCLUDE_DIRS: the include path. Paths are relative to the APPDIR folder.

		LIB_DIRS: the library search path

		LIBS: libraries to link (found in the library search path). Library names are given without the lib prefix and .a suffix.

		LIB_DEPS: full path of additional library files to include.

To use a different name/location for customization makefile file other than build.mk, define USER_MAKEFILE to point to
your custom build file. The value of USER_MAKEFILE is the location of your custom makefile relative to the application sources.

Integrated application.cpp with firmware

In previous versions of the make system, the application code was integrated with the firmware code at src/application.cpp.
This mode of building is still supported, however the location has changed to: user/src/application.cpp.

To build the default application sources, simply run make

make

Platform Specific vs Platform Agnostic builds

Currently the low level hardware specific details are abstracted away in the HAL (Hardware Abstraction Layer) implementation.
By default the makefile will build for the Spark Core platform which will allow you to add direct hardware calls in your application firmware.
You should however try to make use of the HAL functions and methods instead of making direct hardware calls, which will ensure your code is more future proof!
To build the firmware as platform agnostic, first run make clean, then simply include SPARK_NO_PLATFORM=y in the make command.
This is also a great way to find all of the places in your code that make hardware specific calls, as they should generate an error when building as platform agnostic.

make APP=myapp SPARK_NO_PLATFORM=y

Build Output Directory

The build system uses an out of source directory for all built artifacts. The
directory is build/target/. In previous versions of the build system, artifacts
were placed under a local build folder. If you would prefer to maintain this style of
working, you can create a symlink from build/target/main/platform-0/ to main/build/.
Then after building main, the artifacts will be available in the build/ subdirectory
as before.

Flashing the firmware to the device via DFU

The program-dfu target can be used when building from main/ to flash
the compiled .bin file to the device using dfu-util. For this to work, dfu-util should be
installed and in your PATH (Windows), and the device put in DFU mode (flashing yellow).

cd main
make program-dfu

Enabling DFU Mode automatically

Normally, the device requires physical button presses to enter DFU mode. The build
also supports automatic DFU mode, where the device will automatically enter DFU
mode as part of running the program-dfu target. To enable this, define the environment variable
PARTICLE_SERIAL_DEV to point to the name of the serial device. E.g.

PARTICLE_SERIAL_DEV=/dev/tty.usbmodem12345 make all program-dfu

the device will then automatically enter DFU mode and flash the firmware.

(Tested on OS X. Should work on other platforms that provide the stty command.)

Flashing the firmware to the device via ST-Link

The st-flash target can be used to flash all executable code (bootloader, main and modules)
to the device. The flash uses the st-flash tool, which should be in your system path.

Debugging

To enable JTAG debugging, add this to the command line:

USE_SWD_JTAG=y

and perform a clean build.

To enable SWD debugging only (freeing up 2 pins) add:

USE_SWD=y

and perform a clean build. For more details on SWD-only debugging
see https://github.com/spark/firmware/pull/337

Compilation without Cloud Support

[Core only]

To release more resources for applications that don’t use the cloud, add
SPARK_CLOUD=n to the make command line. This requires a clean build.

After compiling, you should see a 3000 bytes reduction in statically allocated RAM and 35k reduction in flash use.

Building the develop branch

Before the 0.4.0 firmware was released, we recommended the develop branch for early adopters
to obtain the code. This is still fine for early adopters, and people that want the bleeding edge,
although please keep in mind the code is untested and unreleased.

The released code is available in the latest branch. This will eventually become the master
branch once 0.4.4 is released for the Core.

To build the develop branch, follow these guidelines:

		export the environment variable PARTICLE_DEVELOP=1

		after pulling from the develop branch, be sure to build and flash the system firmware

Recipes and Tips

		The variables passed to make can also be provided as environment variables,
so you avoid having to type them out for each build. The environment variable value can be overridden
by passing the variable on the command line.

		PARTICLE_DEVELOP can be set in the environment when building from the develop branch. (Caveats apply that this is bleeding edge!)

		PLATFORM set in the environment if you mainly build for one platform, e.g. the Photon.

Photon

Here are some common recipes when working with the photon. Note that PLATFORM=photon doesn’t need to be present if you have PLATFORM=photon already defined in your environment.

Complete rebuild and DFU flash of latest system and application firmware
firmware/modules$ make clean all program-dfu PLATFORM=photon

Incremental build and flash of latest system and application firmware
firmware/modules$ make all program-dfu PLATFORM=photon

Build system and application for use with debugger (Programmer Shield)
APP/APPDIR can also be specified here to build the non-default application
firmware/modules$ make clean all program-dfu PLATFORM=photon USE_SWD_JTAG=y

Incremental build and flash user application.cpp only (note the directory)
firmware/main$ make all program-dfu PLATFORM=photon

Build an external application
firmware/modules$ make all PLATFORM=photon APPDIR=~/my_app

For system firmware developers:

Rebuild and flash the primary unit test application
firmware/main$ make clean all program-dfu TEST=wiring/no_fixture PLATFORM=photon

Build the compilation test (don't flash on device)
firmware/main$ make TEST=wiring/api PLATFORM=photon

 © Copyright .
 Created using Sphinx 1.3.1.

_static/minus.png

_static/down.png

_static/plus.png

_static/comment-close.png

_static/comment.png

_static/ajax-loader.gif

dependencies.html

 Navigation

 		
 index

 		Particle Firmware develop documentation »

1. Download and Install Dependencies

Building the firmware locally requires these dependencies ot be installed:

		GCC for ARM Cortex processors

		Make

		Device Firmware Upgrade Utilities

		Zatig (for windows users only)

		Git

1. GCC for ARM Cortex processors

The Core/Photon uses an ARM Cortex M3 CPU based microcontroller. All of the code is built around the GNU GCC toolchain offered and maintained by ARM.

The build requires version 4.9.3 20150529 or newer of ARM GCC and will print an error
message if the version is older than this.

Linux and Windows:

		Download and install version 4.9.x from: https://launchpad.net/gcc-arm-embedded

OS X users can install the toolchain with Homebrew [http://brew.sh/]:

		brew tap PX4/homebrew-px4

		brew update

		brew install gcc-arm-none-eabi-49

		arm-none-eabi-gcc --version (should now say v4.9.x)

If you are upgrading an existing installation you will have to unlink and link your symblinks:

		brew update

		brew install gcc-arm-none-eabi-49 (when you run this, it will tell you the following commands)

		brew unlink gcc-arm-none-eabi-48 (example)

		brew link --overwrite gcc-arm-none-eabi-49 (example)

		arm-none-eabi-gcc --version (should now say v4.9.x)

2. Make

In order to turn your source code into binaries, you will need a tool called make. Windows users need to explicitly install make on their machines. Make sure you can use it from the terminal window.

Download and install the latest version from: http://gnuwin32.sourceforge.net/packages/make.htm

3. Device Firmware Upgrade Utilities

Install dfu-util 0.8. Mac users can install dfu-util with Homebrew [http://brew.sh/] brew install dfu-util or Macports [http://www.macports.org], Linux users may find it in their package manager, and everyone can get it from http://dfu-util.gnumonks.org/index.html

4. Zatig

In order for the device to show up on the dfu list, you need to replace the USB driver with a utility called Zadig [http://zadig.akeo.ie/]. Here is a tutorial [https://community.spark.io/t/tutorial-installing-dfu-driver-on-windows/3518] on using it. This is only required for Windows users.

5. Git

Download and install Git: http://git-scm.com/

6. Command line tools

		crc32

		available in MinGW on Windows

		available by default on OS X

		linux users, please check with your package manager

 © Copyright .
 Created using Sphinx 1.3.1.

debugging.html

 Navigation

 		
 index

 		Particle Firmware develop documentation »

Debug Build

The firmware includes a debugging aid that enables debug output, from the system and from your own application code.

To create a debug build, add DEBUG_BUILD=y to the make command line. If the previous build was not a debug build then
you should add clean to perform a clean build.

On the photon, the system modules must also be rebuilt also with DEBUG_BUILD set.

Logging Messages

Logging messages enabled in the debug build of firmware.

A debug output handler determines where the log messages are printed to.
The system provides some built-in output handlers:

		SerialDebugOutput writes output to USB Serial

		Serial1DebugOutput writes output to Hardware Serial (Serial1)

To add an output handler to your application, declare it at top of your application code (before setup):

SerialDebugOutput debugOutput;

This will print all log messages to USB Serial.

The debug output variable can take two optional parameters

		the baud rate,

		the logging level - filters out messages below a given level

SerialDebugOutput debugOutput; // default is 9600 and log everything
SerialDebugOutput debugOutput(57600); // use a faster baudrate and log everything
SerialDebugOutput debugOutput(57600, WARN_LEVEL); // use a faster baudrate and log only warnings or more severe

Log Levels

These log levels are available:

 ALL_LEVEL log everything
 TRACE_LEVEL
 DEBUG_LEVEL
 WARN_LEVEL
 ERROR_LEVEL
 PANIC_LEVEL
 NO_LOG_LEVEL log nothing

When a log level is set on the debug output, only log messages that are at the same level or
further down in the list are printed.

For example, if the log level is set to WARN_LEVEL then warnings, errors and
panic events are logged, but not debug messages or

Adding your own log messages

Logging messages are added to your application code by using a logging macro.

void loop()
{
 static unsigned count = 0;
 DEBUG("loop count %d", count);
 count++;
}

If the debug level is enabled, this would print out “loop count 0” on the first
iteration, and higher numbers with each iteration.

(Note that we increment the variable outside of the logging macro. This is because
logging macros shouldn’t have side affects that the program depends on, since
these side affect will not be present in the non-debug build of the code.)

The logging message includes the

The name of the macro sets the logging level.

 DEBUG
 INFO
 WARN
 ERROR

The first parameter is a format string. This follows the printf format.
The remaining parameters are substituted into the placeholders in the format string.

 © Copyright .
 Created using Sphinx 1.3.1.

_static/up-pressed.png

